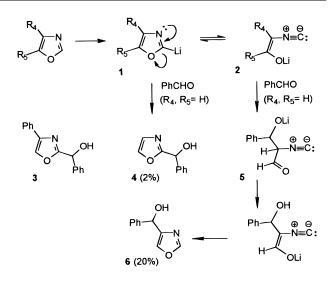
Communications

Metalation of Oxazole–Borane Complexes: A Practical Solution to the Problem of Electrocyclic Ring Opening of 2-Lithiooxazoles


Edwin Vedejs* and Sean D. Monahan

Chemistry Department, University of Wisconsin, Madison, Wisconsin 53705

Received May 3, 1996 (Revised Manuscript Received June 14, 1996)

Attempts to trap 2-lithiooxazoles with electrophiles must contend with the complications due to the facile equilibrium between valence bond tautomers 1 and 2.1-3 Using benzaldehyde as the electrophile, Whitney and Rickborn reported variable yields of 3, increasing from 35% to 75% as the time for reaction of 1/2 ($R_4 = Ph$; R_5 = H) with PhCHO was increased from 0.25 to 24 h (rt) prior to workup.^{3a} According to these authors, the long reaction time allows anionic adducts derived from the acyclic tautomer **2** to equilibrate with the precursor(s) of cyclic 3. In a related example, Hodges et al. found that metalation of the parent oxazole with butyllithium followed by reaction with benzaldehyde (-78 °C to rt, 24 h) affords only 2% of the "normal" product 4, 34% of benzyl alcohol, and 20% of the 4-substituted oxazole 6.3b The latter product is presumably derived from conversion of **2** into **5** followed by cyclization. An added complication is that 2 can react with oxophilic electrophiles at enolate oxygen as well as carbon,^{1,3a,b,c} and direct metalation at C₄ is yet another possibility if C₂ and C₅ are blocked.^{3a} The recently reported 2-chlorozinc analogs behave more predictably and can be intercepted at oxazole C₂ using acyl halides in the presence of CuI or Pd(0) catalysts.^{4,5} However, no prior study has reported practical yields in the alkylation of 2-metalloxazoles at C_2 .^{3b,f,g}

It occurred to us that the undesired electrocyclic ring opening process from **1** to **2** might be prevented if the crucial electron pair at oxazole nitrogen could be locked in place by complexation with a suitable Lewis acid. Complexation was also expected to activate the C_2 -H bond for metalation.⁶ Suppression of the electrocyclic pathway has now been achieved by the simple expedient

of borane complexation as described below, resulting in a practical method for the functionalization of oxazoles at C_2 .

Commercial THF-borane was combined with 5-phenv yloxaxole⁷ 7a, and the solution was concentrated to yield the crystalline borane complex 8. Despite initial concerns that the oxazole ring might be reduced by borane,⁸ 8 proved to be surprisingly stable and could be stored for several weeks at room temperature. Complex formation was at least 98% complete according to NMR assay, but 8 did not crystallize efficiently. Fortunately, isolation of 8 was not necessary, and good overall yields were obtained using oxazole borane complexes generated in situ. The first metalation experiments followed the 2-lithiooxazole precedent.^{3a} Thus, 8 was generated in THF at room temperature (30 min) and was then treated with LiTMP/THF at -78 °C. The resulting solution of **9** was quenched with benzaldehyde, followed by decomplexation using 5% acetic acid in ethanol to give 10 (>90% yield, Table 1). Attempted deprotonation with LDA was not successful, but *n*-BuLi or *s*-BuLi (1.1 equiv, 30 min at -78 °C in THF) gave good results and were more convenient than LiTMP.⁹ No complications due to nucleophilic addition to the iminium subunit were detected.¹⁰ Reaction times as short as 30 min or as long as 16 h at -78 °C gave similar results, in contrast to the strongly time dependent aldehyde additions of the equilibrating tautomers 1/2 ($R_4 = Ph$; $R_5 = H$).^{3a} Quenching of 9 with hydrocinnamaldehyde also worked well and produced the alcohol 11.

⁽¹⁾ Schröder, R.; Schöllkopf, U.; Blume, E.; Hoppe, I. *Liebigs Ann. Chem.* **1975**, 533–46.

⁽²⁾ Reviews: (a) Iddon, B. *Heterocycles* 1994, *37*, 1321-46. (b)
Gilchrist, T. L. *Adv. Heterocycl. Chem.* 1987, *41*, 41.
(3) (a) Whitney, S. E.; Rickborn, B. *J. Org. Chem.* 1991, *56*, 3058.

^{(3) (}a) Whitney, S. E.; Rickborn, B. J. Org. Chem. 1991, 56, 3058.
(b) Hodges, J. C.; Patt, W. C.; Connolly, C. J. J. Org. Chem. 1991, 56, 449.
(c) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P. J. Org. Chem. 1987, 52, 3413.
(d) Dondoni, A.; Dal'Occo, T.; Fantin, Gi.; Fogagnolo, M.; Medici, A.; Pedrini, P. J. Chem. Soc., Chem. Commun. 1984, 258.
(e) Kozikowski, A. P.; Ames, A. J. Org. Chem. 1980, 45, 2548.
(f) Wasserman, H. H.; McCarthy, K. E.; Prowse, K. S. Chem. Rev. 1986, 86, 845.
(g) Jacobi, P. A.; Ueng, S.; Carr, D. J. Org. Chem. 1979, 44, 2042.
(i) Howe, R. K.; Lee, L. F. Eur. Pat. Appl. 27020; Chem. Abstr. 1981, 95, 80933.

⁽⁴⁾ Crowe, E.; Hossner, F.; Hughes, M. J. Tetrahedron 1995, 51, 8889.

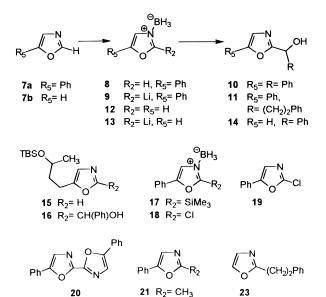
⁽⁵⁾ Harn, N. K.; Gramer, C. J.; Anderson, B. A. *Tetrahedron Lett.* **1995**, *36*, 9456.

^{(6) (}a) Kessar, S. V.; Singh, P.; Vohra, R.; Kaur, N. P.; Singh, K. N. J. Chem. Soc., Chem. Commun. 1991, 568. (b) Kessar, S. V.; Singh, P.; Singh, K. N.; Dutt, M. J. Chem. Soc., Chem. Commun. 1991, 570. (c) Kessar, S. V.; Vohra, R.; Kaur, N. P.; Singh, K. N.; Singh, P. J. Chem. Soc., Chem. Commun. 1994, 1327. (d) Kessar, S. V.; Singh, P.; Singh, K. N.; Kaul, V. K.; Kumar, G. Tetrahedron Lett. 1995, 36, 8481. (e) Ebden, M. R.; Simpkins, N. S. Tetrahedron Lett. 1995, 36, 8697.

⁽⁷⁾ Van Leusen, A. M.; Hoogenboom, B. E.; Siderius, H. *Tetrahedron Lett.* **1972**, 2369–72.

⁽⁸⁾ Knapp, K. K.; Keller, P. C.; Rund, J. V. J. Chem. Soc., Chem. Commun. 1978, 971.

⁽⁹⁾ To a solution of $7b^7$ (1.00 g, 6.89 mmol) in 34 mL of THF at rt under nitrogen was added BH₃-THF (6.9 mL, 1 M in THF, Aldrich). After 30 min, the solution was cooled to -78 °C, and *n*-BuLi (4.44 mL, 1.63 M in hexane, Aldrich) was added dropwise. After 30 min, benzaldehyde (0.77 mL, 7.58 mmol) was added. The mixture was stirred for 30 min, and 34 mL of 5% HOAc in ethanol was added. The cooling bath was removed, and the mixture was stirred for 18 h at rt to cleave the borane complex. Conventional workup (supporting information) gave **10**, isolated by crystallization from ether, two crops (1.4 g, 81%).


^{(1.4} g, 81%).
(10) (a) Turchi, I. J. In *Oxazoles*; Turchi, I. J., Ed.; Wiley: New York, 1986; Chapter 1. (b) Vedejs, E.; Grissom, J. W. *J. Org. Chem.* 1988, 53, 1876.

⁽¹¹⁾ Vedejs, E. Tucci, F. C. Unpublished results.

 Table 1. Reaction of 2-Lithiooxazole-Borane Complexes with Aldehydes^a

			0		
entry	oxazole	aldehyde	base	product	yield (%)
1	7a	PhCHO	LiTMP	10	94 ^b
2	7a	PhCHO	<i>n</i> -BuLi	10	88; ^c 81 ^d
3	7a	PhCHO	s-BuLi	10	90 ^b
4	7a	PhCH ₂ CH ₂ CHO	<i>n</i> -BuLi	11	84 ^e
5	7b	PhCHO	s-BuLi	14	70
6	15	PhCHO	<i>n</i> -BuLi	16	84

^{*a*} Reactions were performed in THF at -78 °C using 1.05 equiv of base and 1.1 equiv of aldehyde. After reaction times of 30 min or longer (see notes), the resulting mixtures were quenched and decomplexed with 5% acetic acid in ethanol (18 h, rt). ^{*b*} Yield of major fraction after chromatography and crystallization; 16 h reaction time with PhCHO. ^{*c*} Yield of major fraction after chromatography; 2 h reaction time with PhCHO. ^{*d*} Yield of product crystallized after aqueous workup; 30 min reaction time with PhCHO. ^{*e*} Yield of crystallized product; 20 min reaction time with RCHO.

A similar complexation—metalation procedure proved effective for the parent oxazole **7b**.^{3b,4} Thus, **12** was prepared in THF solution, and **13** was generated by treatment with butyllithium as before. Addition of benzaldehyde afforded **14** (70% isolated; Table 1, entry 5). No benzyl alcohol was observed (<3%), and no ringopened products or C₄-substituted oxazoles were detected, in contrast to the results using 2-lithiooxazole **1/2** (R₄ = R₅ = H).^{3b} In the same way, the 5-alkyloxazole **15**¹¹ was converted into **16** (84%; Table 1, entry 6).

22 R2= (CH2)2Ph

To further define the scope of this methodology, the anion **9** derived from 5-phenyloxazole-borane complex (**8**) was trapped with a variety of electrophiles (Table 2). Trimethylchlorosilane afforded a 6:1 mixture of **17:8** according to NMR assay (Table 2, entry 1), but attempted decomplexation using protic conditions (5% acetic acid in ethanol) resulted only in the desilylated oxazole **7a**. Anion trapping with excess (2 equiv) hexachloroethane resulted in the formation of **19**¹² (Table 2, entry 2). On the other hand, if quenching was performed using 0.5

 Table 2. Reactions of 2-Lithio-5-phenyloxazole-Borane

 Complex 9 with Electrophiles^a

	-		-	
entry	electrophile	<i>T</i> (°C)	product	yield (%)
1	Me ₃ SiCl	-20	17	78 ^b
2	C ₂ Cl ₆ (2 equiv)	-78	19	86
3	C ₂ Cl ₆ (0.5 equiv)	-78	20	79
4	$CH_{3}I$	-20	21	74 ^c
5	PhCH ₂ CH ₂ OTf	-20	22	65^d

^{*a*} Reactions were performed in THF using 1.05 equiv of *n*-BuLi to generate the anion at -78 °C, followed by addition of the electrophile at the indicated temperature. After 16 h, the reactions were allowed to warm and were treated with 5% acetic acid/ethanol to decomplex the borane. ^{*b*} Yield of borane complex prior to acetic acid/ethanol treatment; 13% of unreacted **8** was also isolated. ^c Yield of sublimed product. ^{*d*} Ca. 5% recovered **7a** was also present.

equiv of hexachloroethane, then the bis-oxazole **20**^{1,13} was obtained in good yield (Table 2, entry 3). This product is presumably formed by reaction of the initial product **18** with **9**.

Alkylation reactions of 9 were also studied (Table 2, entries 4 and 5). Treating the anion with iodomethane at -20 °C (16 h) afforded 2-methyl-5-phenyloxazole (21)¹⁴ (74% yield). Attempts to perform a similar alkylation with phenethyl bromide or iodide failed to give significant conversion of 9, but the corresponding triflate, Ph(CH₂)₂- OSO_2CF_3 ,¹⁵ was sufficiently reactive at -20 °C (18 h) and afforded 22¹⁶ (65% yield). Similarly, oxazole (7b) was alkylated to give 23 (76%).¹⁷ Prior literature attempts to alkylate oxazoles at C2 resulted in yields of 30% or less.^{3b,f,g} The reaction of **9** with benzoyl chloride was also explored briefly. However, a mixture of products was obtained including ca. 15% of the benzoate ester of alcohol 10, apparently derived from reduction of the expected 2-benzoyl-5-phenyloxazole. The benzoylation was not explored further in view of the successful organozinc alternative.4,5

In summary, the 2-lithiooxazole complexes **9** and **13** have been shown to undergo facile reaction with representative electrophiles. The troublesome anionic electrocyclic ring opening reaction is completely suppressed using the borane complexation procedure.

Acknowledgment. This work was supported by a grant from the National Institutes of Health (CA17918).

Supporting Information Available: Experimental procedures and ¹H NMR spectra for **8**, **10**, **11**, **14**, **16**, and **19–23** (17 pages).

JO960813Z

(13) Hayes, F. N.; Rogers, B. S.; Ott, D. G. J. Am. Chem.Soc. 1955, 77, 1850.

(14) Kondrat'eva, G. Y.; Chzhi-ken, K. Zh. Obsch. Khim. 1962, 32, 2348.

(17) Note Added in Proof: The same methods could be used for BH_3 activation, lithiation, and $PhCH_2CH_2OTf$ alkylation of thiazole (85% isolated yield).

^{(12) (}a) Harrison, R. G.; Jamieson, W. B.; Ross, W. J.; Saunders, J. C. Ger. Offen. *Chem. Abstr.* **1976**, *86*, 155658. (b) Harrison, R. G. Ger. Offen. 2,459,380; *Chem. Abstr.* **1976**, *86*, 121320. (c) Maquestiau, A.; Ben A., Fouad B.; Flammang, R. *Bull. Soc. Chim. Belg.* **1990**, *99*, 89–101.

⁽¹⁵⁾ Lee, C. C.; Unger, D. Can. J. Chem. 1973, 51, 1494.

⁽¹⁶⁾ Kashima, C.; Arao, H.; Okada, R. Heterocycles 1990, 30, 487.